Tailoring Thermoelectric Performance of Stabilized High-Entropy Perovskite Ceramics through Nb⁵⁺ Substitution

Asif Ali¹, Monika Tatarková¹, Vladimir V. Srdić², Nikola Kanas³, Ondrej Hanzel¹, Peter Tatarko¹

¹Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava, Slovakia

²Department of Materials Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bul. Cara Lazara 1, 21000, Novi Sad, Serbia

³ TEGMATICA Ltd, Karlovacki drum 32, 23300, Kikinda, Serbia

ABSTRACT

Novel Stablized high-entropy perovskite oxides, Sr_{0.25}Ba_{0.25}Ca_{0.25}La_{0.25}Ti_{1-x}Nb_xO₃ with varying Nb⁵⁺ concentrations were synthesised using the conventional solid-state route and sintered using field-assisted sintering technology at a temperature range from 1200 - 1350 °C. Novel compositions with a high configuration entropy were selected based on the theoretical predictions, considering tolerance factor, polarizability, electronegativity, configuration entropy, and global instability index GII-value (using "Structure prediction diagnostic software" SPUDS). The XRD analysis confirmed the formation of a single-phase simple cubic perovskite structure, having a space group of Pm-3m. The SEM and EDX analysis confirmed the formation of dense microstructures with a relative density higher than 95 % and phase purity of the sintered samples. The FTIR analysis confirmed the formation of a single phase and metal oxides bonding in the structures. The UV-visible spectra measured in the diffuse reflectance mode indicated a gradual increase in the optical band gap value of the samples with increasing Nb⁵⁺ concentration. The increase in the configuration entropy of the samples had a significant impact on the thermoelectric performance of the samples. The samples possessed a high negative Seebeck coefficient (S), confirming their n-type semiconducting behaviour. In addition, the samples exhibited a low thermal diffusivity < 1 mm²/s, a low thermal conductivity K < 3.8 Wm⁻¹K⁻¹ and a moderate electrical conductivity of $\sigma = 1.26$ S/cm for x = 0.05. These parameter favours thermoelectric performance, leading to an increased ZT value. The present work offers a compositional design approach for perovskite oxides to reduce their intrinsic thermal conductivity and enhance their thermoelectric performance.

ACKNOWLEDGEMENT

This work was funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V03-00094/2024/VA.