3D-printed hydrogel scaffolds with bioactive glass and antibacterial *propolis*-loaded ZIF-8 for tissue regeneration

N. Alipanah^{1*}, O. Sisman¹ and Z. Neščáková¹

¹ FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia

Keywords: 3D printing, Antibacterial properties, Bioactive glass, Hydrogel, Metal-organic frameworks, ZIF-8.

Hydrogels containing bioactive glasses (BGs) are promising composites for tissue regeneration applications, however, bacterial infection remains a problematic challenge that can compromise the healing process. Thus, there is a growing demand for a bioactive and antibacterial hydrogel scaffolds. In this study, alginate dialdehyde-gelatin (ADA-GEL), a hydrogel composite with suitable printability and biocompatibility was selected for 3D printing of BG-containing hydrogels. Spherical SiO₂—CaO BG nanoparticles (~300 nm in diameter) were synthesized to endow bioactivity, and their apatite-forming ability after 7 days of immersion in the simulated body fluid (SBF) was confirmed by Raman spectroscopy and X-ray diffraction.

To introduce antibacterial functionality, *propolis*-loaded ZIF-8 (ZP) was synthesized. ZIF-8, Zn-based metal organic framework, exhibits slight solubility in the aqueous solutions and thus provides sustained release of antibacterial Zn²⁺ ions and *propolis* extract, a natural antibacterial agent. Antibacterial assays demonstrated a significant inhibition of bacterial growth at 250 μg.mL⁻¹ concentration of ZP particles, reducing the viability of *E. coli* and *S. aureus* bacteria to 32% and 2%, respectively. At this concentration ZP particles maintained biocompatibility as confirmed by indirect cellular viability assays using MG-63 cells.

For scaffolds fabrication, BG and ZP particles (at 0.2 % w/v each) were dispersed in ADA solution (5% w/v), followed by the addition of GEL solution (7.5% w/v) to initiate Schiff's base reaction (in DPBS at 37 °C). The hydrogel scaffolds was obtained through 3D printing and then stabilized by post-crosslinking using CaCl₂ solution. Incorporation of both particles reduced hydrogel degradation in HBSS medium after 7 days from 27% to 9%. While BG and ZP particles are expected to provide bioactivity and antibacterial properties, further studies will evaluate. scaffold features in terms of cell viability and antibacterial effect.

Acknowledgments

This research work was supported by the Slovak Research and Development Agency under the contract No. APVV-22-0036 and the Slovak Recovery Plan under grant agreement No. 09I01-03-V04-00040/2024/VA.

^{*}E-mail: nariman.alipanah@tnuni.sk