Joining of CVD β-SiC and SiC_f/SiC ceramics to themselves using in-situ formed SiC-ZrC interlayer

N. Hosseini¹, P. Tatarko¹

ABSTRACT

In this work, CVD β -SiC and SiC_f/SiC ceramics were joined to themselves with in-situ formed SiC-ZrC ceramic composite interlayer and the mechanical properties of the joints were investigated. The ZrSi₂ alloy and ZrSi₂-C powders mixture were applied as an interlayer on the joining surfaces of the materials in the form of a slurry. Afterward, the pressure-assisted joining was performed via field-assisted sintering technology at different temperatures (1400 – 1650°C). The joints with pure ZrSi₂ alloy showed a non-homologous interlayer, consisting of both ZrC and remaining ZrSi₂. In addition, a significant reaction with SiC substrate was observed, leading to the dissolution of SiC and infiltration of the filler into the base materials. When ZrSi₂-C interlayer was used, the uniform SiC-ZrC composite interlayer was formed by in-situ reactions between ZrSi₂, C, and SiC-based ceramics. The strength of the CVD β -SiC joints was determined using shear strength measurements. The strength of the joints was significantly improved with the increasing joining temperature and reached the initial strength of the reference, un-joined CVD β -SiC and/or SiC_f/SiC materials.

Keywords: Joining, SiCf/SiC, ceramic matrix composites, CVD-SiC, high-temperature ceramics