International
EU-MACE – European Materials Acceleration Center for Energy | |
European Materials Acceleration Center for Energy | |
Program: | COST |
Project leader: | Ing. Tatarko Peter, PhD. |
Annotation: | Materials have played a decisive role in nearly all rupture technologies in the industrial history of our society. Faced with the current climate, geopolitical and humanitarian crisis, many international and regional entities (political, industrial and scientific alike) recognize the importance of a strong materials innovation ecosystem for driving the clean energy transition. In response, self-driving laboratories (SDL) (a.k.a. MAPs – materials acceleration platforms) are created at institutional, regional and international levels. SDLs integrate combinatorial synthesis, high-throughput characterization, automated analysis and machine learning for fast-track discovery and optimization of advanced materials. While these platforms are proving their effectiveness in producing advanced materials with targeted functionalities and physical properties, a large margin of improvement still exists. Streamlining materials integration into components and to safe and sustainable products is one example challenge in order to enable rupture technology. Another challenge is that of geographical concentration of MAPs that practically excludes a substantial fraction of research labs and tech-companies in Europe from contributing and benefiting from such platforms. Finally, next generation material science researchers need to develop new skills to be able to integrate such systemic and automated approach into their future R&D framework. To this end, EU-MACE will become an ecosystem for accelerated materials development at the user end, gathering researchers and stakeholders with state-of-the-art digital and material competences combined with the market/social pull. Our inclusive & systemic approach will lay the foundation for a future centre of excellence for advanced functional materials to assist transition toward a united and stronger EU. |
Duration: | 3.10.2023 – 2.10.2027 |
Nové vysokoentropické borido-karbidy pre vysokoteplotné aplikácie | |
Novel high entropy diborodicarbides for ultra-high temperature applications | |
Program: | Bilateral – other |
Project leader: | Ing. Tatarko Peter, PhD. |
Duration: | 1.1.2024 – 31.12.2026 |
Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments | |
Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments | |
Program: | JRP |
Project leader: | Ing. Tatarko Peter, PhD. |
Duration: | 1.1.2024 – 31.12.2026 |
BioSurf – Transformácia bioinertného na bioaktívne prostredníctvom povrchového inžinierstva | |
Transforming bioinert to bioactive through surface engineering | |
Program: | JRP |
Project leader: | prof. Ing. Galusek Dušan, DrSc. |
Annotation: | Cieľom navrhovaného projektu je vyvinúť sklo/keramický implantát s vysokou pevnosťou a bioaktivitou. Na dosiahnutie hlavného cieľa bude potrebné vyriešiť nasledujúce úlohy:a) modifikácia povrchu implantátu úpravou studenou plazmou s cieľom zabezpečiť dostatočnú adhéziu bioaktívnych povlakov na bioinertný keramický (ZrO2) substrát.b) príprava viacvrstvových povlakov z bioaktívnej keramiky na báze hydroxyapatitu (HA) a/alebo síranu vápenatého (CaSO4), ktoré pozostávajú z rozpustnej vrchnej vrstvy a z medzivrstvy (medzivrstiev) bioaktívnej keramiky zabezpečujúcej pevnú väzbu so substrátom.c) príprava povlakov z mezopórovitých bioaktívnych sklenených častíc pripravených pomocou sol-gélu, ktoré sú dopované rôznymi terapeutickými anorganickými iónmi, ktoré by vyvolali bioreakciu okolitého tkaniva.d) hodnotenie biologickej účinnosti povlakov testovaním in vitro životaschopnosti buniek, bioaktivity a mechanických vlastností (pevnosť priľnavosti, odolnosť proti opotrebovaniu) povlakovaných implantátov. |
Duration: | 1.1.2023 – 31.12.2025 |
JoinHEC – Vývoj nových metód spájania vysoko-entropických keramických materiálov | |
Development of new joining methods for high entropy ceramics | |
Program: | Bilateral – other |
Project leader: | Ing. Tatarko Peter, PhD. |
Annotation: | The main aim of the proposed project is to develop new joining techniques for high entropy ceramics (HEC) in order to improve the operational limits of the joints for aerospace applications. The project proposes an innovative way of manufacturing of HEC joints with potentially improved high temperature properties, using a direct solid-state diffusion bonding (without an interlayer) or diffusion bonding with refractory metal interlayers. For the first time, refractory high entropy alloys (HEA) will be used as the joining interlayers between a pair of HEC, or as the interlayer for joining of HEC to ceramic matrix composites (CMCs). The project aims to generate new fundamental knowledge on the understanding of the effect of electric field and surface preparation on the direct diffusion bonding of HEC, as well as the interfacial physico-chemical phenomena occurring at the HEC/HEA and HEA/CMCs interfaces. The mechanical performance of the joints at room and high temperatures will be investigated to define the operational limits of the joints. The project will provide a comprehensive insight on the joining of high entropy ceramics for potential aerospace applications. This may significantly expand the application potential of the recently developed next generation ultra-high temperature ceramics, i.e. high entropy ceramics. |
Duration: | 1.7.2022 – 30.6.2025 |
SIMBA – Sodík-iónové a sodík-kovové batérie novej generácie pre efektívne a udržateľné uskladnenie energie | |
Sodium-Ion and sodium Metal Batteries for efficient and sustainable next-generation energy storage | |
Program: | Horizon 2020 |
Project leader: | doc. Ing. Lenčéš Zoltán, PhD. |
Annotation: | Institute of Inorganic Chemistry, Slovak Academy of Sciences is participating in the SIMBA project “Sodium-Ion and sodium Metal BAtteries for efficient and sustainable next-generation energy storage” under the grant agreement 963542 has started on the 1st of January 2021. The Kick-off meeting took place online and headstarted a highly ambitious project to develop sustainable and safe batteries to store renewable energy.The SIMBA project has the concrete goal of delivering a safe and low-cost all-solid-state-sodium battery technology for stationary application. Reducing the use of critical materials is the core of SIMBA, which will employ sustainable battery materials, reducing supply risks and restrictions and environmental impact, which are instead currently affecting other technologies, i.e. Lithium-ion batteries. The unprecedented concept of SIMBA is based on the integration of a sodium metal anode in a sodium free assembly architecture including a highly porous support on the anode side, a single-ion conductive composite/hybrid polymer electrolyte and an innovative cathode material.SIMBA gathers a consortium of 16 partners from 6 EU and associated countries having received a funding from the European Commission of 8M €.For more information, please contact the coordinator of the project, Prof. Ralf Riedel: ralf.riedel@tu-darmstadt.deThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 963542 |
Duration: | 1.1.2021 – 31.12.2024 |
National
3DGALACTYC – Funkcionalizované 3Dsklokeramické membrány na pokročilé fotokatalytické čistenie pitných vôd | |
Functionalized 3D glass-ceramic membranes for advanced photocatalytic drinking water treatment | |
Program: | SRDA |
Project leader: | Ing. Michálková Monika, PhD. |
Annotation: | Micro-pollutants, such as medication, disinfectants, laundry detergents, pesticides, metals, and antibiotic-resistant organisms, can often be found in underground and drinking water. To remove these pollutants, a specialized filtration process with effective porosity in the micro or nano range is required. Membrane processes offer numerous benefits over traditional water treatment methods, including high efficiency, low energy consumption, small space requirements, and environmental friendliness. However, membrane processes can also face challenges, such as scaling, fouling, and degradation, which can negatively impact their performance and lifespan. Efficient and affordable water treatment technologies are critical in today\’s world. The proposed project seeks to create durable, highly porous photocatalytic glass-ceramic membranes supplying specific nano, micro, or macro needs. The project will employ innovative and cost-effective upcycling techniques of pharmaceutical non-recyclable waste glass and various 3D additive techniques to develop the next generation of membranes. Creating these advanced 3D porous structures requires using a suitable precursor with micro-level porosity. This will be achieved through the process of alkaline activation and flame synthesis of pharmaceutical glass frit. TiO2 and Fe2O3 will be added to the glass structure to give photocatalytic properties in the UV-VIS region. The design optimization of membranes will solve the macroporosity. After printing, the final step involves using microwave sintering to create the 3D membranes, which has a lower environmental impact than traditional sintering methods. Additionally, an advanced phase separation process will be applied to achieve porosity on the nano level. |
Duration: | 1.7.2024 – 30.6.2028 |
MULCOMAT – Multifunkčné kompozitné materiály pre cielenú detekciu, adsorpciu a dekontamináciu nebezpečných organických molekúl | |
Multifunctional composite materials for detection, adsorption and decontamination of hazardous organic molecules | |
Program: | SRDA |
Project leader: | Mgr. Jankovič Ľuboš, PhD. |
Annotation: | The proposed project is focused on the development of new generation of organo-modified clay minerals using poly(2-alkenyl-2-oxazolines) as representatives of non-ionic, but still highly polar polymers. We expect that organo-modification of montmorillonites using this type of polymers will lead to organoclay materials with more efficient intercalation and thus, with higher adsorption efficiency toward various hazardous organic molecules. The presence of poly(2-alkenyl-2-oxazolines) and poly(2-alkenyl-2-oxazines) in the gallery of clay minerals will ensure catalytic decomposition of hazardous organic molecules. In our case, we use for the evaluation of adsorption and hydrolytic decomposition organophosphate as organic compounds widely used as pesticides and they habe been already used as chemical warfare agents. The combination of improved adsorption and accelerated hydrolytic decomposition of studied organophosphates represents the main innovative aspect of the project and pave an avenue to montmorillonite-based nanoreactors for dephosphorylation reactions of neurotoxic organophosphate agents. Here, we present metal-free catalytic systems that are potentially usable for human and environmental protection. Moreover, poly(2-alkenyl-2-oxazolines) and poly(2-alkenyl-2-oxazines) represent new groups of polymers with reactive pendant 2-oxazoline and 2-oxazine groups, respectively, capable to provide post-polymerization reactions with carboxylic groups. In our case, 2-oxazoline groups will be used for the structural stabilization during melt mixing with carboxylic units containing polymer matrices. |
Duration: | 1.7.2024 – 30.6.2028 |
Nová generácia termoelektrických materiálov pre udržateľnú energiu | |
Nová generácia termoelektrických materiálov pre udržateľnú energiu | |
Program: | Plán obnovy EÚ |
Project leader: | Ing. Tatarko Peter, PhD. |
Duration: | 1.7.2024 – 30.6.2028 |
CoSinG – Studené spekanie skiel | |
Cold sintering of glass | |
Program: | SRDA |
Project leader: | Ing. Michálková Monika, PhD. |
Annotation: | Glass is routinely produced on an industrial scale by cooling a glass forming melt. This versatile and well-established method facilitates the production of a large variety of compositions and shapes. However, it has its limits in terms of the maximum cooling rate that can be achieved, preventing the production of compositions with high tendency to crystallization. Also, it cannot produce complex shapes, such as bioactive glass scaffolds or glass filters with hierarchical porosity, or multicomponent and multilayered parts. To prepare such parts, glass powders (frits) are processed by advanced shaping methods known from ceramic technology, such as additive manufacturing or tape casting. The green compacts are then consolidated by viscous flow sintering at temperatures exceeding the transition temperature (Tg) of the respective glass. However, viscous flow sintering often results in partial or complete crystallization of the glass, impairing its properties (e.g. bioactivity, mechanical properties). The proposed project is thus focused on developing and optimising cold sintering of selected types of glass. These include (i) aluminate glasses with a high tendency to crystallisation that cannot be prepared by conventional cooling of the melt, (ii) complex shapes (scaffolds) of bioactive glasses with hierarchical porosity prepared by additive manufacturing, (iii) complex shapes (glass filters for wastewater remediation) from hitherto unrecyclable borosilicate pharmaceutical glass and (iv) multilayered glass structures prepared by tape-casting with tailored gradient of refraction indices and thermal expansion. As the densification of glass via the cold sintering process is not fully understood, fundamental studies of densification mechanisms will be also carried out. The results obtained in the project are of great industrial and scientific interest, contributing to (i) development of a new industrially scalable process of production of glass parts. |
Duration: | 1.7.2024 – 30.6.2028 |
TESLOW – Základ k ekologicky udržateľným sodíkovo-iónovým batériám pre nízko nákladovú technológiu | |
Towards Eco-sustainable Sodium-ion batteries for a LOW-cost technology | |
Program: | SRDA |
Project leader: | doc. Ing. Lenčéš Zoltán, PhD. |
Duration: | 1.7.2024 – 30.6.2028 |
Vývoj pokročilých luminiscenčných sklenených 3D štruktúr pomocou aditívnej výroby | |
Development of advanced luminescent glass 3D structures by additive techniques | |
Program: | VEGA |
Project leader: | Ing. Michálková Monika, PhD. |
Annotation: | The main goal of the project is to develop a new generation of luminescent phosphor-in-glass (PiG)optoelectronic materials with high efficiency, low-cost fabrication (3D printing), and tailored luminescenceproperties. Additive manufacturing will enable the combination of mutually supporting phosphors in differentlayers within a single glass matrix, thus improving the optical properties of the final material. In addition, thephosphors used for additive manufacturing will be prepared in spherical shapes – microspheres that can be solidor hollow – to further enhance the efficiency of the phosphor. |
Duration: | 1.1.2024 – 31.12.2027 |
Žiadúce a nežiadúce interakcie roztavených fluoridov s materiálmi na báze kritických prvkov | |
Desirable and undesirable interactions between molten fluorides and materials of critical elements | |
Program: | VEGA |
Project leader: | Ing. Kubíková Blanka, PhD. |
Annotation: | The submitted project is focused on the study of desirable and undesirable interactions of molten fluoride systemswith materials based on the selected critical elements, the recycling rate of which is minimal in the EU. In thiscase, controlled physico-chemical processes are considered desirable interactions, in contrast to undesirableinteractions, primarily in connection with the corrosion of construction materials. The research will be focused onthe physicochemical and thermochemical analysis of molten fluorides, the study of solubility/corrosion resistanceof materials in molten salts, the synthesis of new substances, and spectral and diffraction analysis of puresubstances, molten mixtures, and solidified mixtures after experiments. |
Duration: | 1.1.2024 – 31.12.2027 |
NEOCAR – Ultra-vysokoteplotné karbidy so zvýšenou oxidačnou odolnosťou | |
Novel enhanced oxidation-resistant ultra-high temperature carbides | |
Program: | SRDA |
Project leader: | Ing. Tatarko Peter, PhD. |
Annotation: | The improvement of oxidation resistance of ultra-high temperature ceramics (UHTCs) has critical importance in meeting the growing need for applications used at temperatures exceeding 2000 °C in oxidizing atmospheres such as hypersonic vehicles and spacecraft. Recently, with the aid of the exploration of multi-principal element ceramics, consisting of four or more different cations or anions stabilized by the configurational entropy, a vast new compositional space has opened up to develop novel UHTCs with enhanced oxidation resistance. However, to design such materials through the prediction of their complex oxidation processes, it is fundamental to establish a comprehensive understanding of the mono and binary transitional metal carbides that is targeted in the present project, something that is currently missing. Thus, the main aim of the project is to develop novel oxidation-resistant UHTCs through a systematic experimental based study in which the high-temperature properties (oxidation/ablation resistance, thermal shock resistance etc.) and mechanical behaviour of mono and binary refractory carbides will be studied. Different secondary phase materials with the incorporation of silicon will also be tested in the form of SiC and transitional metal silicides, which are known as protective glassy phase-forming compounds that can further improve the oxidation resistance of newly developed UHTCs. In addition to the understanding of the oxidation and mechanical behaviour of these ceramics and composites, the prediction of the models established will be validated by the synthesis of new oxidation-resistant 3-, 4- and 5-metal carbide systems that will be also tested experimentally. The accomplishment of the present project will generate fundamental knowledge that is needed for the design of novel more complex multi-principal element ceramics. Filling this lack of knowledge would be of great importance for whole materials science community. |
Duration: | 1.7.2023 – 30.6.2027 |
RADLON – Vplyv radiačnej záťaže na sklovláknitú izoláciu z hľadiska recirkulácie chladiva v havarijných podmienkach jadrových elektrární s tlakovodnými reaktormi | |
Influence of radiation load on fiberglass insulation in terms of refrigerant recirculation in emergency conditions of nuclear power plants with pressurized water reactors | |
Program: | SRDA |
Project leader: | prof. Ing. Liška Marek, DrSc., Dr.h.c. |
Annotation: | The aim of the Project is to extend the methodology of verifying the functional capability of emergency core cooling systems in case of loss-of-coolant accidents as well as that of cooling systems intended for severe acc idents from the standpoint of impacts of long-term exposure of thermal insulation to radiation at elevated temperatures and in such a way to actively contribute to increasing the operating safety of nuclear power plants. Within the Project, samples of thermal insulation exposed to accelerated heat and radiation ageing will be investigated. The radiation doses are anticipated to be at the level of a 40-year operation at a dose rate of 10 Gy/h on the primary circuit of a WWER 440 V213 type NPP. Samples treated in such a way will be investigated from the standpoint of changes in their physico-mechanical properties as well as from the standpoint of their chemical resistance to corrosive effects of emergency reactor coolant. However, preparation of the samples by accelerated heat and radiation ageing i s extremely both time-consuming and costly. For instance, to obtain a sufficient radiation dose at a level simulating a 40-year operation (approximately 3500 kGy), irradiation period is needed equal to approximately 1650 h of net irradiation time with an average irradiation dose rate of 2 kGy/h. Irradiation is to be performed at an elevated temperature of 300°C which means that it will have to be performed in a thermal box. That is why it is necessary to develop a procedure for simulation of irradiation effects in order to obtain a sufficient number of samples for integrated testing. A feasible solution seems to be thermo-mechanical loading of the samples since, based on the knowledge obtained so far, thermal insulation fibres under the effect of irradiation at elevated temperature lose their mechanical elasticity and become brittle. In addition, their chemical resistance to corrosion effects of the coolant solution changes. |
Duration: | 1.7.2023 – 30.6.2027 |
DCG-XAS – Vývoj pokročilých metód určených na presnú predpoveď a analýzu röntgenových spektier molekúl s otvorenou obálkou | |
Development of advanced methods for accurate prediction and analysis of X-ray spectra of open-shell species | |
Program: | SRDA |
Project leader: | Mgr. Komorovský Stanislav, PhD. |
Annotation: | The main objective is to develop, implement, and apply new methods for accurate prediction and interpretation of electron absorption spectra and non-linear optical processes. The project focuses on open-shell systems that contain elements across the periodic table and on the X-ray spectral region. To this end, an accurate description of relativistic effects is mandatory. The newly developed approaches will be implemented into our in-house program ReSpect, based on the density functional theory, and applied to interesting chemical problems with the help of our broad network of international collaborators. For a successful application of our methods, it is crucial also to implement new innovative tools for interpretation, visualization, and analysis of the calculated results. |
Duration: | 1.7.2023 – 30.6.2027 |
Pokročilé materiály na báze anorganických vrstevnatých štruktúr študované modelovým a experimentálnym prístupom | |
Advanced materials based on the inorganic layered structures studied by model and experimental approaches | |
Program: | VEGA |
Project leader: | Ing. Scholtzová Eva, CSc. |
Annotation: | The project presents a combined theoretical and experimental research of selected pollutants adsorbed on the layered structures (LS) based on graphene (G), aluminosilicates (AS) and their modifications with improved physicochemical properties. Pollutants are extracted significantly, e.g., from contaminated waters, by adsorption on these LS. A comparative study on the adsorption effectivity of pollutants by layered structures of the G type (expensive materials) and clays (lower cost) is focused on understanding the interactions responsible for the forming and stability of these complexes. New knowledge about the way of pollutants immobilisation also contributes to the proposal of advanced hybrid materials combining properties of both types of LS applied in green technologies. The outputs from modelling will also interpret the results obtained experimentally to achieve a complex characterisation of the studied advanced materials based on the inorganic layered structures. |
Duration: | 1.1.2023 – 31.12.2026 |
LumiPiG – Development of advanced luminescent glass 3D structures | |
Development of advanced luminescent glass 3D structures | |
Program: | Plán obnovy EÚ |
Project leader: | Ing. Michálková Monika, PhD. |
Annotation: | This project aims to support basic research carried out in Slovakia by an excellent domestic researcher in the R3 phase of her career and to prevent the “brain drain” of domestic top researchers abroad. Support from this call will bring several benefits; in particular, it will increase the capacity of excellent scientists in Slovakia and increase the attractiveness and internationalisation of the Slovak research environment, which will impact a higher level of collaboration with scientific communities abroad.The project\’s primary goal is to develop a new generation of luminescent phosphor-in-glass (PiG) optoelectronic materials with high efficiency, low-cost fabrication (3D printing), and tailored luminescence properties. Additive manufacturing will enable the combination of mutually supporting phosphors in different layers within a single glass matrix, thus improving the optical properties of the final material. In addition, the phosphors used for additive manufacturing will be prepared in spherical shapes – microspheres that can be solid or hollow – to enhance the efficiency of the phosphor further. |
Duration: | 1.7.2024 – 30.6.2026 |
Photomat – Fotofunkčné hybridné materiály organických luminofórov a nanočastíc vrstevnatých silikátov | |
Photofunctional hybrid materials of organic luminophores and nanoparticles of layered silicates | |
Program: | SRDA |
Project leader: | Mgr. Boháč Peter, PhD. |
Annotation: | The topic of the project is based on modern trends in materials research, and the experience and recent results of the project team. It was discovered that adsorption, intercalation, or molecular aggregation of specific types of organic molecules can significantly increase their photoactivity, manifesting as an increase in luminescence. The strategy of increasing photoactivity will be the main objective of the project. Each of the phenomena should be applied depending on the molecular structure of the luminophores. The project will focus on hybrids of photoactive organic luminophores and layered silicates. Structurally optimized S,N-heteroaromatic dyes and their ion metal complexes will be prepared within the project. Heteroaromatic systems will be modified by cationic groups or their functionalization with cationic metal ions including Ru(II), Ir(III), Au(III), and others to increase the compatibility of these chromophores with silicates and achieve the required photophysical properties. Appropriate selection of the layered carrier, choice of chemical modification, and suitable conditions for the synthesis of hybrid systems will be the key factors to achieve the project objectives. In addition to improving the properties of molecules, other goals will be to prepare complex functional materials with efficient use of light energy. Here, the organization of molecules in nanostructural hybrids will play a key role to achieve optimal photophysical interactions aimed at specific functionality. In addition to luminescent properties, the aim will be to prepare hybrids with mainly photosensitizing properties. The last step will be the use of nanoparticles for the modification of technical polymers by the formation of nanocomposites. The objective will be obtaining surfaces with photosensitizing and photodisinfection properties, which will be tested for the growth of microbial biofilms. |
Duration: | 1.7.2023 – 30.6.2026 |
LaCer – Návrh, analýza a mechanická charakterizácia laminárnej keramiky | |
Design, analysis and mechanical characterization of laminar ceramics | |
Program: | Plán obnovy EÚ |
Project leader: | Dr. Najafzadehkhoee Aliasghar, Ph.D. |
Annotation: | Engineering ceramics, in particular oxide, is a key enabler in different applications, from dental ceramics to substrates for electronic devices. However, their application is limited due to their brittle nature and catastrophic failure. This project aims to exploit the stress generation between the layers of laminar ceramics during sintering to improve the mechanical performance of bulk laminar ceramics. To this end, different ceramic tapes will be prepared, and laminar ceramics with various architectures will be fabricated. The residual stress in bulk laminated ceramics will be tailored to induce crack-arresting properties, and the mechanical properties and the microstructural features of samples will be investigated. Finally, having the digital twins of the laminated ceramics modeled, the generation of stresses and the mechanical performance of samples will be simulated using finite element methods (FEM) to identify the crucial parameters. |
Duration: | 1.7.2024 – 30.6.2026 |
NANOCOMENVIRO – Nový tiolom funkcionalizovaný nanokompozit montmorillonit/biochar pre imobilizáciu ťažkých kovov z kontaminovanej záplavovej pôdy | |
Novel thiol-functionalized montmorillonite/biochar nanocomposite for immobilization of heavy metals from contaminated floodplain soil | |
Program: | Plán obnovy EÚ |
Project leader: | Ing. Slaný Michal, PhD. |
Annotation: | Soil contamination by heavy metals is currently a global environmental problem due to the potential transfer of these toxic elements to the biosphere and hydrosphere, posing risks to plants, animals, and especially human health. Toxic metals such as Hg, Cd, As, Tl, Pb, Cu, Ni, and Zn are transported through river water in suspended material or in dissolved form and accumulating in floodplains during floods with low flow velocities. However, our understanding of the biogeochemistry of toxic metals in soils, especially under dynamic redox conditions, is very limited. Therefore, detailed knowledge of the redox behaviour of heavy metals in soil is crucial to comprehend mobilization processes and accurately monitor their release into water under changing redox conditions. It is also important to understand the redox mobilization of heavy metals in the soil so that their hazard potential can be better predicted. Therefore, growing need to find novel, environmentally friendly, and cost-effective materials from abundant resources that can immobilize these dangerous substances in floodplain soils. This project offers a novel and innovative solutions for heavy metal immobilization using thiol-functionalized montmorillonite/biochar nanocomposite from floodplain soil under dynamic environmental (redox) conditions. Such a study has not been performed yet and holds great potential to contribute new knowledge and thus lead to significant improvement environmental quality, application of appropriate management, risk assessment of contaminated floodplain soils as well as improving the quality of soil and plants, which is closely related to human health. The proposed objectives of the project focus on new applications and on previously unexplored step change solutions that will answer the most important questions as well as research and technological development needs, including those that are important on a global scale. |
Duration: | 1.7.2024 – 30.6.2026 |
NIPOFABs – Smerom k nanotechnológiám využívajúcim bioaktívne častice/molekuly v boji proti mikrobiálnym biofilmom | |
Towards nanotechnologies using bioactive particles/molecules in the fight against microbial biofilms | |
Program: | SRDA |
Project leader: | Ing. Pálková Helena, PhD. |
Annotation: | The topic of submitted project reflects current scientific challenges using the strategy of an interdisciplinary approach in tackling the highly urgent issues of microbial biofilms. It is focused on the fields of basic and molecular microbiology in association with study of the prevention or eradication of microbial biofilms using novel hybrid materials. In the project, biological research is closely linked to various approaches in the field of the nanomaterial chemistry. The main subject of the study will cover multispecies biofilms, not only composed of bacteria but also of yeasts and their mutual combinations, which reflects their significance in biofilm-associated infections. The tested microorganisms will include Staphylococcus aureus, enterococci, Escherichia coli, and representatives of yeasts of the genus Candida. The formation of biofilms, interspecies interactions, including the role of quorum sensing molecules in these processes, as well as the effectiveness of bioactive particles/molecules in the prevention and eradication of biofilms, including the phenomenon of multidrug resistance, will be studied in detail by modern microbiological methods. Hybrid materials based on inorganic layered nanoparticles in the role of carriers of bioactive organic molecules, in particular photosensitizers, will be used as active materials. Functionalized nanoparticles will be used to modify the surfaces of selected types of polymers often used in medical practice. The aim will be to prepare new or improved materials to achieve maximal antimicrobial effectiveness. The results of the project could bring new knowledge in the topic of microbial biofilms, but also in the preparation of antimicrobial hybrid systems applicable in various fields of nanomedicine. |
Duration: | 1.7.2022 – 30.6.2026 |
ComCer – Vývoj nových keramických materiálov komplexného zloženia pre extrémne aplikácie | |
Development of new compositionally-complex ceramics for extreme applications | |
Program: | SRDA |
Project leader: | Ing. Tatarko Peter, PhD. |
Annotation: | The main aim of the proposed project is to develop next generation ultra-high temperature ceramics capable of withstanding temperatures up to 3000°C for propulsion systems, rocket engines and other aerospace applications. This will be achieved by the synthesis of diboride ceramics with unique compositionally -complex structures, comprising of at least five metal elements. A systematic study will be conducted to generate new knowledge on the understanding of the effect of various molar ratios of individual metal cations in diboride structures on the stability, synthesis, sintering and mechanical properties of bulk diboride ceramics. The results will significantly contribute to the expansion of the high entropy ceramics concept with equimolar compositions towards the development of compositionally-complex ceramics with non-equimolar compositions. The project also proposes an innovative way of manufacturing ultra-high temperature ceramics, consisting of the development of ceramic composites based on the high-entropy and compositionally-complex diboride matrix, reinforced with the refractory additives. The output of the project will be new fundamental knowledge on the formation of disordered diboride structures, and their effect on mechanical properties of the materials at room, intermediate, and ultra-high temperatures. |
Duration: | 1.7.2022 – 30.6.2026 |
Development of Hybrid Nanomaterials with Antimicrobial Properties based on Layered Silicates and Xantene Dyes | |
Development of Hybrid Nanomaterials with Antimicrobial Properties based on Layered Silicates and Xantene Dyes | |
Program: | Other projects |
Project leader: | Mgr. Pribus Marek, PhD. |
Duration: | 1.7.2024 – 31.12.2025 |
Fluoridové taveninové systémy pre zelenú výrobu hliníka bez produkcie CO2 | |
Molten fluoride systems for green production of aluminium without CO2 emissions | |
Program: | VEGA |
Project leader: | Ing. Šimko František, PhD. |
Annotation: | The proposed project is related to complex phase and physico-chemical analysis of multicomponent nMF-AlF3 systems (M = Na, K, n=3-1.2) with the addition of metal oxides Al, Fe, and Ni where compounds based on Fe and Ni are represented corrosion products from the use of inert anodes in aluminium CO2 less production. These are the so-called low-temperature electrolytes, whose research has recently increased attention related to the development and application of inert anodes. The aim of the project will be to define the solubility of oxides/spinels, the phase composition of the systems and to identify the individual components, arising from the interaction between the corrosion products and the electrolyte. These systems will be studied to determine the relationship between the structure and their physicochemical behavior by using either of spectral methods in-situ in the molten state, or by ex-post analysis of the solidified samples, and by physicochemical analysis of high temperature molten systems. |
Duration: | 1.1.2022 – 31.12.2025 |
Hydrotermálna syntéza fluoroskandátov alkalických kovov | |
Hydrothermal synthesis alkali-metal fluoroscandates | |
Program: | Other projects |
Project leader: | RNDr. Demovics Silliková Veronika, PhD. |
Annotation: | The presented project aims to systematically synthesize and structurally analyze compounds within the MF–ScF3system (M = Li, Na, K, Rb, Cs, and NH4) with the general composition MxScyFz. The hydrothermal synthesis methodin Teflon-lined autoclaves will be employed as the primary approach. The main project objective is to establish acomprehensive framework for synthesizing compounds within this system, with a particular emphasis on monitoringand optimizing factors influencing the synthesis process and final product properties. The project will focus on thepreparation of multifunctional products, with specific interest in achieving thermally induced phase transformations inthe synthesized materials. The successful completion of the project will provide potential applications in the futureincluding the doping of new materials with specific lanthanide fluorides, allowing for the analysis of their luminescentand optical properties. Additionally, the developed synthetic procedure can be extended for the synthesis of ternaryfluorides of other lanthanides. The exploration of hydrothermal synthesis methods and the comparison with traditionalsolid-state conditions adds a novel dimension to the project, providing an opportunity to discover new compoundswith distinct structures and properties. |
Duration: | 1.7.2024 – 31.12.2025 |
Translucentné luminiscenčné materály ako inovatívny substrát pre fotokatalytické vrstvy | |
Translucentné luminiscenčné materály ako inovatívny substrát pre fotokatalytické vrstvy | |
Program: | Other projects |
Project leader: | Mgr. Petrisková Patrícia, PhD. |
Duration: | 1.7.2024 – 31.12.2025 |
APSPQ – Umelé fotosyntetické systémy založené na fotoaktívnych molekulách a kvantových bodoch | |
Artificial photosynthetic systems based on photoactive molecules and quantum dots | |
Program: | SASPRO |
Project leader: | Mgr. Matejdes Marián, PhD. |
Annotation: | The presented project deals with the development of a water-dispersible artificial photosynthetic system capable of capturing solar radiation on an area of several thousands of µm2 per particle and utilizing the gained solar energy within photodegradation, photo disinfection, or photocatalytic processes. The energy of the light radiation will be transported to a distance of several tens of µm via a non-radiative or radiative energy transfer mechanism to quantum dots located at the edge of the artificial antenna. After the funneling of the excitation energy to quantum dots, it is expected that this energy will drive at the quantum dot/H2O interface photoactive processes. Besides cadmium-based, it is aimed to develop simultaneously also indium- and zinc-based artificial photosynthetic systems having a much higher probability of being interesting for industrial/commercial applications. |
Duration: | 1.9.2022 – 31.8.2025 |
BENTONITE – GAP – Bentonit: strategická surovina Slovenska – inovatívne hodnotenie zdrojov a ich kvality pre jej efektívne využívanie | |
Bentonite: Slovak strategic raw material – Innovative assessment of bentonite quality and origin for its efficient use | |
Program: | SRDA |
Project leader: | RNDr. Madejová Jana, DrSc. |
Annotation: | Bentonite is an important industrial raw material. Due to the high amount of clay minerals from the smectite group, bentonite has unique properties, e.g. high swelling capacity, plasticity, high specific surface area, cation exchange capacity and low hydraulic conductivity. Due to these properties bentonites have broad range of possible applications. Consequently, worldwide bentonite production is constantly increasing. Slovak republic (SR) is one of the world\’s leading bentonite producers and bentonites belong to the strategic raw materials in SR. In the last 10-15 years, several new bentonite deposits have been opened in SR, most of which have never been studied in detail.Which is one of the causes that the potential of Slovak bentonites is not fully utilized. One of the objectives of the project is therefore the comprehensive characterization of bentonites from new deposits. The mineral and chemical composition of bentonites, their physico-chemical, mechanical, and rheological properties will be determined. The obtained results will help to better understand the geology and genesis of bentonite deposits which may lead to thediscovery of other economic accumulations of bentonites. The main contribution of the project lies in the rational, economical, and efficient use of domestic raw materials which will lead to the long-term sustainability of bentonite exploitation in SR. The way in which the proposed changes will be implemented is highly innovative. The main application outputs of the project such as: passports for the optimal utilization of different qualitative types of bentonites, including economic analysis, 3D model of bentonite quality and geological model of selected bentonite deposit, will contribute to achieve this ambitious goal. The multidisciplinary team of experts on domestic and worldbentonites in cooperation with major bentonite producer in SR, REGOS, s.r.o. is guarantee of successful solution ofthe proposed project. |
Duration: | 1.1.2021 – 30.6.2025 |
NanoBioFit – Nanoštrukturované, funkčne navrstvené a bio-inšpirované 3D iplantáty na báze titánu | |
Nanostructured, functionally graded, and bioinspired 3D Ti-based implants | |
Program: | SRDA |
Project leader: | doc. Ing. Hnatko Miroslav, PhD. |
Annotation: | In general, patient response to implants is strongly dependent on the host tissue ─ implant interface because processes such as healing, osteolysis, and infection take place specifically at this interface. Therefore, modification and tailoring of transplants surface properties are attractive methods to trigger and accelerate healing processes and to reduce the possibility of osteolysis and infection.The main goal of the project is oriented towards improving the adhesion of bio-coatings on titanium alloy surfaces and ensure the enhancement of bio-compatibility of the bio-inert implants. Therefore, the main goal will be divided into two interconnected parts.The first part will be devoted to electropolishing of titanium and titanium-based alloys. This electrochemical surface treatment is generally considered as one of the most efficient, convenient and adaptable technique for the improvement of the physical and mechanical surface properties of materials.The second part of the project will deal with the preparation of bio-compatible surface layer on Ti implants by:- the formation of TiO2 nanotube arrays by anodic oxidation of Ti-based alloy – electrophoretic deposition (EPD) of coatings based on bio-composites such as polymers doped with various bioactive glass prepared by glass melting or sol-gel process (with possible antibacterial and inflammatory effect).Introduction of the convenient surface treatment process together with highly bioactive coating materials on bioinert Ti-based 3D implants will allow us to provide personalized, well-fitting implants without the need of additional medical treatment. Significant enhancement of patient comfort together with the reduction of the medical costs will be the main benefits of the presented project. |
Duration: | 1.8.2021 – 30.6.2025 |
Elektromagnetické tienenie funkčne gradientných vrstevnatých kompozitov na báze SiC s prídavkom grafénu a uhlíkových nanorúrok | |
Electromagnetic shielding properties of functionally graded layered SiC-graphene and SiC-carbon nanotubes composites | |
Program: | VEGA |
Project leader: | Ing. Hanzel Ondrej, PhD. |
Annotation: | The main goal of this project is preparation of layered SiC-carbon nanostructure composites with highelectromagnetic shielding effectiveness. The research will be focus on study of effect of carbon nanostructures (graphene nanoplatelets and carbon nanotubes) addition into the silicon carbide matrix and arrangement of functional layers on electromagnetic shielding effectiveness and functional properties of layered composites. In order to achieve project objectives, research focused on preparation of composite granulated powders with homogeneous distribution of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) and their subsequent effective sintering will be necessary. Composition and arrangement of functional layers of composite layered materials with gradient content of carbon nanostructures will be optimized in order to achieve high electromagnetic shielding effectiveness. Functional and mechanical properties of such prepared layered composites will be studied as well. |
Duration: | 1.1.2021 – 31.12.2024 |
Hlinitano-kremičitanové sklené a sklokeramické materiály spevnené iónovou výmenou a dodatočnými funckionalitami | |
Ion exchange strengthened aluminosilicate glass/glass-ceramics with additional functionalities | |
Program: | VEGA |
Project leader: | prof. Ing. Galusek Dušan, DrSc. |
Duration: | 1.1.2021 – 31.12.2024 |
In-situ tvorba bioaktívneho funkčne gradientného nitridu kremičitého počas spekania v elektrickom poli | |
The in-situ formation of bioactive functionally graded silicon nitride by field assisted sintering | |
Program: | VEGA |
Project leader: | Mgr. Tatarková Monika, PhD. |
Annotation: | This project proposes an innovative approach to develop new type of functionally graded Si3N4 bioceramics, consisting of electric field assisted sintering and post-sintering oxyacetylene flame treatment. Different experimental set-ups for field assisted sintering will be investigated in order to maximize a directional effect of electric current on the migration of bioactive additives towards one surface of the material. This will lead to the in-situ formation of a continuous graded Si3N4 biomaterials from a homogenous powder mixture. The bioactivity of the materials will be further improved by the flame treatment, forming a porous layer with bioactive additives. For the first time, the proposed approach will ensure the in-situ formation of a continuous graded structure without any distinct interfaces, typical of layered ceramics, which often act as stress concentrators. The effect of gradient structure on the mechanical and biological properties of novel functionally graded Si3N4 will be investigated. |
Duration: | 1.1.2022 – 31.12.2024 |
Luminofory s nulovým teplotným zhášaním luminiscencie pre aplikácie v pc-WLED s NUV excitáciou | |
Zero-thermal-quenching phosphors for NUV converted pc-WLEDs application | |
Program: | VEGA |
Project leader: | prof. Ing. Galusek Dušan, DrSc. |
Annotation: | The project is focused on research and development of new type phosphors with zero thermal quenching (TQ) behaviour, for potential application in light sources based on conversion of excitation light in NUV spectral range (produced by LED chip) to visible light, such as high power HB LEDs (high brightness LED) or laser lighting.Phosphors will be prepared as powders/nano-powders and as PiG (Phosphor in Glass) composites. The effect of activator and co-dopant concentration on PL emission intensity produced by phosphor under NUV excitation will be investigated. Photoluminescence properties of phosphors containing rare-earth and transition metal ions will be studied in detail with special attention on near-zero/zero TQ behaviour of phosphors up to 250°C. The attention will be paid to study of relations between luminescent properties of materials and their structure and morphology. |
Duration: | 1.1.2022 – 31.12.2024 |
Pokrok vo výpočte a interpretácii spektroskopických parametrov zlúčenín ťažkých prvkov | |
Advancing in calculation and interpretation of spectroscopic parameters of heavy element compounds | |
Program: | VEGA |
Project leader: | Dr. Malkin Oľga, DrSc. |
Annotation: | The project is devoted to further development of relativistic methods for calculation of spectroscopic properties of heavy-element compounds. The development will be based on DFT program ReSpect (Relativistic Spectroscopy) currently supported and developed by close collaboration between the Institute of Inorganic Chemistry, SAV and the University of Tromso, Norway. In this project we plan to extend the existing set of theoretical tools for analysis and interpretation of spectroscopic parameters of paramagnetic compounds with an emphasis on the use of localized molecular orbitals within 4-component non-collinear DFT framework. The second challenging objective is to extend the set of spectroscopic properties implemented in ReSpect. This task will involve the development and implementation of methods for their calculation. We plan to apply the newly developed methods and programs to study heavy-element compounds in collaboration with our foreign partners. |
Duration: | 1.1.2021 – 31.12.2024 |
Pórovité keramické anódy pre sodíkové batérie novej generácie | |
Porous ceramic anodes for novel sodium-ion batteries | |
Program: | VEGA |
Project leader: | doc. Ing. Lenčéš Zoltán, PhD. |
Duration: | 1.12.2022 – 31.12.2024 |
Potenciál vrstevnatých aluminosilikátov ako excelentných nosičov polykatiónov: dizajnovanie nových kompozitných nanomateriálov | |
Potential of layered aluminosilicates as excellent guests to accommodate polymeric cations: design of new composite materials | |
Program: | VEGA |
Project leader: | Ing. Pálková Helena, PhD. |
Annotation: | The project is aimed at the preparation of composite materials based on layered aluminosilicates as suitablecarriers for different types of organic polycations, possessing properties interesting for various applications. Thevariability in the chemical composition of the selected layered materials in connection with the diversity of themolecular structures and properties of polymeric cations and copolymers opens up wide opportunities towardsthe preparation of well-defined systems. Careful selection of the inorganic carries and polycations is an essentialstep to achieve their mutual compatibility resulting not only in preserving but primarily in improving the keyproperties of the prepared composites. Therefore, the synthesis conditions (e.g. pH) and the addition of anothercomponent to the systems (fluorescent dyes, metal nanoparticles) will be evaluated. The cytotoxicity test topredict biocompatibility of the materials, photoactivity, catalytic and adsorption efficiency will be assessed as well. |
Duration: | 1.1.2021 – 31.12.2024 |
Theoretical predictions and synthesis of (Ti-Zr-Hf-Nb-Ta)B2 structures with non-equimolar compositions | |
Theoretical predictions and synthesis of (Ti-Zr-Hf-Nb-Ta)B2 structures with non-equimolar compositions | |
Program: | DoktoGrant |
Project leader: | MSc. Zhukova Inga |
Annotation: | The high-entropy alloys (HEAs) have sparked a lot of scientific attention over the last ten years. Due to a high configuration entropy, HEAs form a single-phase solid solution with simple lattice structures (such as body-centered cubic or face-centered cubic), unlike traditional metal alloys, which include four or more metal elements in equal or almost equal atomic percentages. Most of the researchers work with high-entropy carbon structures (HECs) with equimolar ratios of atoms, as a result, a lot of publications are devoted to carbon ceramics. Our group works with high-entropy diboride structures (HEBs) which consist of 5 different transition atoms [Hf, Nb, Ta, Ti, Zr] combined with boron atoms and include various concentrations of atoms.In the project, uniting the theoretical DFT calculations implemented in the VASP program and laboratory research to confirm the theoretical predictions, we will model and synthesize the HEB structures for further sintering and investigation of the mechanical properties of the newly designed structures. |
Duration: | 1.1.2024 – 31.12.2024 |