Projects

National

APSPQ – Umelé fotosyntetické systémy založené na fotoaktívnych molekulách a kvantových bodoch
Artificial photosynthetic systems based on photoactive molecules and quantum dots
Program: SASPRO
Project leader: Mgr. Matejdes Marián, PhD.
Annotation: The presented project deals with the development of a water-dispersible artificial photosynthetic system capable of capturing solar radiation on an area of several thousands of µm2 per particle and utilizing the gained solar energy within photodegradation, photo disinfection, or photocatalytic processes. The energy of the light radiation will be transported to a distance of several tens of µm via a non-radiative or radiative energy transfer mechanism to quantum dots located at the edge of the artificial antenna. After the funneling of the excitation energy to quantum dots, it is expected that this energy will drive at the quantum dot/H2O interface photoactive processes. Besides cadmium-based, it is aimed to develop simultaneously also indium- and zinc-based artificial photosynthetic systems having a much higher probability of being interesting for industrial/commercial applications.
Duration: 1.9.2022 – 31.8.2025
Potenciál vrstevnatých aluminosilikátov ako excelentných nosičov polykatiónov: dizajnovanie nových kompozitných nanomateriálov
Potential of layered aluminosilicates as excellent guests to accommodate polymeric cations: design of new composite materials
Program: VEGA
Project leader: Ing. Pálková Helena, PhD.
Annotation: The project is aimed at the preparation of composite materials based on layered aluminosilicates as suitablecarriers for different types of organic polycations, possessing properties interesting for various applications. Thevariability in the chemical composition of the selected layered materials in connection with the diversity of themolecular structures and properties of polymeric cations and copolymers opens up wide opportunities towardsthe preparation of well-defined systems. Careful selection of the inorganic carries and polycations is an essentialstep to achieve their mutual compatibility resulting not only in preserving but primarily in improving the keyproperties of the prepared composites. Therefore, the synthesis conditions (e.g. pH) and the addition of anothercomponent to the systems (fluorescent dyes, metal nanoparticles) will be evaluated. The cytotoxicity test topredict biocompatibility of the materials, photoactivity, catalytic and adsorption efficiency will be assessed as well.
Duration: 1.1.2021 – 31.12.2024
BioPolSil – Bionanokompozitné materiály na báze vrstevnatých silikátov
Bionanocomposites based on organic polycations and layered silicates
Program: SRDA
Project leader: RNDr. Madejová Jana, DrSc.
Annotation: The basic research project deals with the preparation and complex characterisation of the structurally unique typesof hybrid materials consisting of clay minerals from smectite group and new synthesized poly(ethylene imine)based polycations. Polymerization of oxazolines opens a wide range of possibilities for the preparation of welldefinedpolycations with precisely designed molecular architectures and properties in order to prepare suitableintercalating agents for clay minerals modifications. The aim is to provide nanocomposites with interestingbiocompatible or biodegradable properties. To achieve this aim a detailed investigation of the effect of variousfactors on the molecular characteristics of poly(ethylene imine) based polycations and consequently on theirbehavior upon smectites interlayers intercalation has to be performed using wide range of different experimentaltechnique (e.g., XRD, XPS, MAS NMR, and IR spectroscopies) but also by means of DFT method in the solidstate.Biocompatibility of prepared polycations and their smectite intercalates will be assed based on cell viability assayand cell morphology after direct contact with selected substances. Prepared polycationic-smectites will be furtherstudied due to their possible applications as new types of fillers for selected biodegradable polymers, drug-deliverysystems and as new composite materials with optical properties. Interdisciplinary project, as designed, providesunique platform for understanding the properties of the newly synthesized polycation-smectite composites. This approach can significantly contribute to the current level of knowledge in the fields of nanomaterials and has the potential for acquiring fundamentally new results.
Duration: 1.7.2020 – 30.6.2024