Projects

International

Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments
Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments
Program: JRP
Project leader: Ing. Tatarko Peter, PhD.
Duration: 1.1.2024 – 31.12.2026
SIMBA – Sodík-iónové a sodík-kovové batérie novej generácie pre efektívne a udržateľné uskladnenie energie
Sodium-Ion and sodium Metal Batteries for efficient and sustainable next-generation energy storage
Program: Horizon 2020
Project leader: doc. Ing. Lenčéš Zoltán, PhD.
Annotation: Institute of Inorganic Chemistry, Slovak Academy of Sciences is participating in the SIMBA project “Sodium-Ion and sodium Metal BAtteries for efficient and sustainable next-generation energy storage” under the grant agreement 963542 has started on the 1st of January 2021. The Kick-off meeting took place online and headstarted a highly ambitious project to develop sustainable and safe batteries to store renewable energy.The SIMBA project has the concrete goal of delivering a safe and low-cost all-solid-state-sodium battery technology for stationary application. Reducing the use of critical materials is the core of SIMBA, which will employ sustainable battery materials, reducing supply risks and restrictions and environmental impact, which are instead currently affecting other technologies, i.e. Lithium-ion batteries. The unprecedented concept of SIMBA is based on the integration of a sodium metal anode in a sodium free assembly architecture including a highly porous support on the anode side, a single-ion conductive composite/hybrid polymer electrolyte and an innovative cathode material.SIMBA gathers a consortium of 16 partners from 6 EU and associated countries having received a funding from the European Commission of 8M €.For more information, please contact the coordinator of the project, Prof. Ralf Riedel: ralf.riedel@tu-darmstadt.deThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 963542
Duration: 1.1.2021 – 31.12.2024

National

ComCer – Vývoj nových keramických materiálov komplexného zloženia pre extrémne aplikácie
Development of new compositionally-complex ceramics for extreme applications
Program: SRDA
Project leader: Ing. Tatarko Peter, PhD.
Annotation: The main aim of the proposed project is to develop next generation ultra-high temperature ceramics capable of withstanding temperatures up to 3000°C for propulsion systems, rocket engines and other aerospace applications. This will be achieved by the synthesis of diboride ceramics with unique compositionally -complex structures, comprising of at least five metal elements. A systematic study will be conducted to generate new knowledge on the understanding of the effect of various molar ratios of individual metal cations in diboride structures on the stability, synthesis, sintering and mechanical properties of bulk diboride ceramics. The results will significantly contribute to the expansion of the high entropy ceramics concept with equimolar compositions towards the development of compositionally-complex ceramics with non-equimolar compositions. The project also proposes an innovative way of manufacturing ultra-high temperature ceramics, consisting of the development of ceramic composites based on the high-entropy and compositionally-complex diboride matrix, reinforced with the refractory additives. The output of the project will be new fundamental knowledge on the formation of disordered diboride structures, and their effect on mechanical properties of the materials at room, intermediate, and ultra-high temperatures.
Duration: 1.7.2022 – 30.6.2026
In-situ tvorba bioaktívneho funkčne gradientného nitridu kremičitého počas spekania v elektrickom poli
The in-situ formation of bioactive functionally graded silicon nitride by field assisted sintering
Program: VEGA
Project leader: Mgr. Tatarková Monika, PhD.
Annotation: This project proposes an innovative approach to develop new type of functionally graded Si3N4 bioceramics, consisting of electric field assisted sintering and post-sintering oxyacetylene flame treatment. Different experimental set-ups for field assisted sintering will be investigated in order to maximize a directional effect of electric current on the migration of bioactive additives towards one surface of the material. This will lead to the in-situ formation of a continuous graded Si3N4 biomaterials from a homogenous powder mixture. The bioactivity of the materials will be further improved by the flame treatment, forming a porous layer with bioactive additives. For the first time, the proposed approach will ensure the in-situ formation of a continuous graded structure without any distinct interfaces, typical of layered ceramics, which often act as stress concentrators. The effect of gradient structure on the mechanical and biological properties of novel functionally graded Si3N4 will be investigated.
Duration: 1.1.2022 – 31.12.2025
NanoBioFit – Nanoštrukturované, funkčne navrstvené a bio-inšpirované 3D iplantáty na báze titánu
Nanostructured, functionally graded, and bioinspired 3D Ti-based implants
Program: SRDA
Project leader: doc. Ing. Hnatko Miroslav, PhD.
Annotation: In general, patient response to implants is strongly dependent on the host tissue ─ implant interface because processes such as healing, osteolysis, and infection take place specifically at this interface. Therefore, modification and tailoring of transplants surface properties are attractive methods to trigger and accelerate healing processes and to reduce the possibility of osteolysis and infection.The main goal of the project is oriented towards improving the adhesion of bio-coatings on titanium alloy surfaces and ensure the enhancement of bio-compatibility of the bio-inert implants. Therefore, the main goal will be divided into two interconnected parts.The first part will be devoted to electropolishing of titanium and titanium-based alloys. This electrochemical surface treatment is generally considered as one of the most efficient, convenient and adaptable technique for the improvement of the physical and mechanical surface properties of materials.The second part of the project will deal with the preparation of bio-compatible surface layer on Ti implants by:- the formation of TiO2 nanotube arrays by anodic oxidation of Ti-based alloy – electrophoretic deposition (EPD) of coatings based on bio-composites such as polymers doped with various bioactive glass prepared by glass melting or sol-gel process (with possible antibacterial and inflammatory effect).Introduction of the convenient surface treatment process together with highly bioactive coating materials on bioinert Ti-based 3D implants will allow us to provide personalized, well-fitting implants without the need of additional medical treatment. Significant enhancement of patient comfort together with the reduction of the medical costs will be the main benefits of the presented project.
Duration: 1.8.2021 – 30.6.2025