International
SIMBA – Sodík-iónové a sodík-kovové batérie novej generácie pre efektívne a udržateľné uskladnenie energie | |
Sodium-Ion and sodium Metal Batteries for efficient and sustainable next-generation energy storage | |
Program: | Horizon 2020 |
Project leader: | doc. Ing. Lenčéš Zoltán, PhD. |
Annotation: | Institute of Inorganic Chemistry, Slovak Academy of Sciences is participating in the SIMBA project “Sodium-Ion and sodium Metal BAtteries for efficient and sustainable next-generation energy storage” under the grant agreement 963542 has started on the 1st of January 2021. The Kick-off meeting took place online and headstarted a highly ambitious project to develop sustainable and safe batteries to store renewable energy.The SIMBA project has the concrete goal of delivering a safe and low-cost all-solid-state-sodium battery technology for stationary application. Reducing the use of critical materials is the core of SIMBA, which will employ sustainable battery materials, reducing supply risks and restrictions and environmental impact, which are instead currently affecting other technologies, i.e. Lithium-ion batteries. The unprecedented concept of SIMBA is based on the integration of a sodium metal anode in a sodium free assembly architecture including a highly porous support on the anode side, a single-ion conductive composite/hybrid polymer electrolyte and an innovative cathode material.SIMBA gathers a consortium of 16 partners from 6 EU and associated countries having received a funding from the European Commission of 8M €.For more information, please contact the coordinator of the project, Prof. Ralf Riedel: ralf.riedel@tu-darmstadt.deThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 963542 |
Duration: | 1.1.2021 – 31.12.2024 |
National
Fluoridové taveninové systémy pre zelenú výrobu hliníka bez produkcie CO2 | |
Molten fluoride systems for green production of aluminium without CO2 emissions | |
Program: | VEGA |
Project leader: | Ing. Šimko František, PhD. |
Annotation: | The proposed project is related to complex phase and physico-chemical analysis of multicomponent nMF-AlF3 systems (M = Na, K, n=3-1.2) with the addition of metal oxides Al, Fe, and Ni where compounds based on Fe and Ni are represented corrosion products from the use of inert anodes in aluminium CO2 less production. These are the so-called low-temperature electrolytes, whose research has recently increased attention related to the development and application of inert anodes. The aim of the project will be to define the solubility of oxides/spinels, the phase composition of the systems and to identify the individual components, arising from the interaction between the corrosion products and the electrolyte. These systems will be studied to determine the relationship between the structure and their physicochemical behavior by using either of spectral methods in-situ in the molten state, or by ex-post analysis of the solidified samples, and by physicochemical analysis of high temperature molten systems. |
Duration: | 1.1.2022 – 31.12.2025 |