Projects

International

AtomDeC – Atómová koncepcia materiálov na báze uhlíka pre novú normálnu spoločnosť
Atomic Design of Carbon-Based Materials for New Normal Society
Program: Multilateral – other
Project leader: Ing. Scholtzová Eva, CSc.
Annotation: The expression “New Normal\’\’ has been used for marking economic/societal goals after the 2008 financial crisis. Nowadays, this term is used for emerging lifestyles at the end of the COVID19 pandemic. Our proposed work relates to the “New Normal Society” by means of contributing to the creation of an upgraded, human-centred society (Japanese “Society 5.0”), where new technologies serve sustainable developments, mitigate the threat of future pandemics, and are devoted to human welfare. We aim to contribute to the worldwide target via the development of advanced carbon-based materials (CBMs). CBMs are key in everyday applications and devices: batteries, power generators, energy converters, mobile devices, structural materials, environmental filters, health care, and medical products. The Consortium is formed from representatives of three continents: each V4 country, Japan, and Canada. Our collective scientific power is focused on advanced CBM target materials by adhering to the concept of “atomic design”, which has been challenging to achieve for C-materials with disordered/amorphous framework. Our integrated work packages will be executed by experts in synthesis, analysis, and theory giving credibility to the deployment of the concept of "atomic design" for CBMs. The Consortium directly addresses the Joint Call for developing advanced materials for extreme environments, electronics and energy harvesting, such as gas storage, flexible electrode/supercapacitors/conductive thin-layers, microelectronics, and optically active materials with high voltage/structure stability. The unique mechanical properties of porous CBMs and our combined engineering expertise allow for targeting COVID19-related material design, such as anti-virus filters.
Duration: 1.11.2021 – 30.10.2024

National

Pokročilé materiály na báze anorganických vrstevnatých štruktúr študované modelovým a experimentálnym prístupom
Advanced materials based on the inorganic layered structures studied by model and experimental approaches
Program: VEGA
Project leader: Ing. Scholtzová Eva, CSc.
Annotation: The project presents a combined theoretical and experimental research of selected pollutants adsorbed on the layered structures (LS) based on graphene (G), aluminosilicates (AS) and their modifications with improved physicochemical properties. Pollutants are extracted significantly, e.g., from contaminated waters, by adsorption on these LS. A comparative study on the adsorption effectivity of pollutants by layered structures of the G type (expensive materials) and clays (lower cost) is focused on understanding the interactions responsible for the forming and stability of these complexes. New knowledge about the way of pollutants immobilisation also contributes to the proposal of advanced hybrid materials combining properties of both types of LS applied in green technologies. The outputs from modelling will also interpret the results obtained experimentally to achieve a complex characterisation of the studied advanced materials based on the inorganic layered structures.
Duration: 1.1.2023 – 31.12.2026
BioPolSil – Bionanokompozitné materiály na báze vrstevnatých silikátov
Bionanocomposites based on organic polycations and layered silicates
Program: SRDA
Project leader: RNDr. Madejová Jana, DrSc.
Annotation: The basic research project deals with the preparation and complex characterisation of the structurally unique typesof hybrid materials consisting of clay minerals from smectite group and new synthesized poly(ethylene imine)based polycations. Polymerization of oxazolines opens a wide range of possibilities for the preparation of welldefinedpolycations with precisely designed molecular architectures and properties in order to prepare suitableintercalating agents for clay minerals modifications. The aim is to provide nanocomposites with interestingbiocompatible or biodegradable properties. To achieve this aim a detailed investigation of the effect of variousfactors on the molecular characteristics of poly(ethylene imine) based polycations and consequently on theirbehavior upon smectites interlayers intercalation has to be performed using wide range of different experimentaltechnique (e.g., XRD, XPS, MAS NMR, and IR spectroscopies) but also by means of DFT method in the solidstate.Biocompatibility of prepared polycations and their smectite intercalates will be assed based on cell viability assayand cell morphology after direct contact with selected substances. Prepared polycationic-smectites will be furtherstudied due to their possible applications as new types of fillers for selected biodegradable polymers, drug-deliverysystems and as new composite materials with optical properties. Interdisciplinary project, as designed, providesunique platform for understanding the properties of the newly synthesized polycation-smectite composites. This approach can significantly contribute to the current level of knowledge in the fields of nanomaterials and has the potential for acquiring fundamentally new results.
Duration: 1.7.2020 – 30.6.2024