Photomat – Fotofunkčné hybridné materiály organických luminofórov a nanočastíc vrstevnatých silikátov
Photofunctional hybrid materials of organic luminophores and nanoparticles of layered silicates
Program: SRDA
Project leader: Mgr. Boháč Peter, PhD.
Annotation: The topic of the project is based on modern trends in materials research, and the experience and recent results of the project team. It was discovered that adsorption, intercalation, or molecular aggregation of specific types of organic molecules can significantly increase their photoactivity, manifesting as an increase in luminescence. The strategy of increasing photoactivity will be the main objective of the project. Each of the phenomena should be applied depending on the molecular structure of the luminophores. The project will focus on hybrids of photoactive organic luminophores and layered silicates. Structurally optimized S,N-heteroaromatic dyes and their ion metal complexes will be prepared within the project. Heteroaromatic systems will be modified by cationic groups or their functionalization with cationic metal ions including Ru(II), Ir(III), Au(III), and others to increase the compatibility of these chromophores with silicates and achieve the required photophysical properties. Appropriate selection of the layered carrier, choice of chemical modification, and suitable conditions for the synthesis of hybrid systems will be the key factors to achieve the project objectives. In addition to improving the properties of molecules, other goals will be to prepare complex functional materials with efficient use of light energy. Here, the organization of molecules in nanostructural hybrids will play a key role to achieve optimal photophysical interactions aimed at specific functionality. In addition to luminescent properties, the aim will be to prepare hybrids with mainly photosensitizing properties. The last step will be the use of nanoparticles for the modification of technical polymers by the formation of nanocomposites. The objective will be obtaining surfaces with photosensitizing and photodisinfection properties, which will be tested for the growth of microbial biofilms.
Duration: 1.7.2023 – 30.6.2026
NIPOFABs – Smerom k nanotechnológiám využívajúcim bioaktívne častice/molekuly v boji proti mikrobiálnym biofilmom
Towards nanotechnologies using bioactive particles/molecules in the fight against microbial biofilms
Program: SRDA
Project leader: Ing. Pálková Helena, PhD.
Annotation: The topic of submitted project reflects current scientific challenges using the strategy of an interdisciplinary approach in tackling the highly urgent issues of microbial biofilms. It is focused on the fields of basic and molecular microbiology in association with study of the prevention or eradication of microbial biofilms using novel hybrid materials. In the project, biological research is closely linked to various approaches in the field of the nanomaterial chemistry. The main subject of the study will cover multispecies biofilms, not only composed of bacteria but also of yeasts and their mutual combinations, which reflects their significance in biofilm-associated infections. The tested microorganisms will include Staphylococcus aureus, enterococci, Escherichia coli, and representatives of yeasts of the genus Candida. The formation of biofilms, interspecies interactions, including the role of quorum sensing molecules in these processes, as well as the effectiveness of bioactive particles/molecules in the prevention and eradication of biofilms, including the phenomenon of multidrug resistance, will be studied in detail by modern microbiological methods. Hybrid materials based on inorganic layered nanoparticles in the role of carriers of bioactive organic molecules, in particular photosensitizers, will be used as active materials. Functionalized nanoparticles will be used to modify the surfaces of selected types of polymers often used in medical practice. The aim will be to prepare new or improved materials to achieve maximal antimicrobial effectiveness. The results of the project could bring new knowledge in the topic of microbial biofilms, but also in the preparation of antimicrobial hybrid systems applicable in various fields of nanomedicine.
Duration: 1.7.2022 – 30.6.2026
BENTONITE – GAP – Bentonit: strategická surovina Slovenska – inovatívne hodnotenie zdrojov a ich kvality pre jej efektívne využívanie
Bentonite: Slovak strategic raw material – Innovative assessment of bentonite quality and origin for its efficient use
Program: SRDA
Project leader: RNDr. Madejová Jana, DrSc.
Annotation: Bentonite is an important industrial raw material. Due to the high amount of clay minerals from the smectite group, bentonite has unique properties, e.g. high swelling capacity, plasticity, high specific surface area, cation exchange capacity and low hydraulic conductivity. Due to these properties bentonites have broad range of possible applications. Consequently, worldwide bentonite production is constantly increasing. Slovak republic (SR) is one of the world\’s leading bentonite producers and bentonites belong to the strategic raw materials in SR. In the last 10-15 years, several new bentonite deposits have been opened in SR, most of which have never been studied in detail.Which is one of the causes that the potential of Slovak bentonites is not fully utilized. One of the objectives of the project is therefore the comprehensive characterization of bentonites from new deposits. The mineral and chemical composition of bentonites, their physico-chemical, mechanical, and rheological properties will be determined. The obtained results will help to better understand the geology and genesis of bentonite deposits which may lead to thediscovery of other economic accumulations of bentonites. The main contribution of the project lies in the rational, economical, and efficient use of domestic raw materials which will lead to the long-term sustainability of bentonite exploitation in SR. The way in which the proposed changes will be implemented is highly innovative. The main application outputs of the project such as: passports for the optimal utilization of different qualitative types of bentonites, including economic analysis, 3D model of bentonite quality and geological model of selected bentonite deposit, will contribute to achieve this ambitious goal. The multidisciplinary team of experts on domestic and worldbentonites in cooperation with major bentonite producer in SR, REGOS, s.r.o. is guarantee of successful solution ofthe proposed project.
Duration: 1.1.2021 – 30.6.2025
Potenciál vrstevnatých aluminosilikátov ako excelentných nosičov polykatiónov: dizajnovanie nových kompozitných nanomateriálov
Potential of layered aluminosilicates as excellent guests to accommodate polymeric cations: design of new composite materials
Program: VEGA
Project leader: Ing. Pálková Helena, PhD.
Annotation: The project is aimed at the preparation of composite materials based on layered aluminosilicates as suitablecarriers for different types of organic polycations, possessing properties interesting for various applications. Thevariability in the chemical composition of the selected layered materials in connection with the diversity of themolecular structures and properties of polymeric cations and copolymers opens up wide opportunities towardsthe preparation of well-defined systems. Careful selection of the inorganic carries and polycations is an essentialstep to achieve their mutual compatibility resulting not only in preserving but primarily in improving the keyproperties of the prepared composites. Therefore, the synthesis conditions (e.g. pH) and the addition of anothercomponent to the systems (fluorescent dyes, metal nanoparticles) will be evaluated. The cytotoxicity test topredict biocompatibility of the materials, photoactivity, catalytic and adsorption efficiency will be assessed as well.
Duration: 1.1.2021 – 31.12.2024
BioPolSil – Bionanokompozitné materiály na báze vrstevnatých silikátov
Bionanocomposites based on organic polycations and layered silicates
Program: SRDA
Project leader: RNDr. Madejová Jana, DrSc.
Annotation: The basic research project deals with the preparation and complex characterisation of the structurally unique typesof hybrid materials consisting of clay minerals from smectite group and new synthesized poly(ethylene imine)based polycations. Polymerization of oxazolines opens a wide range of possibilities for the preparation of welldefinedpolycations with precisely designed molecular architectures and properties in order to prepare suitableintercalating agents for clay minerals modifications. The aim is to provide nanocomposites with interestingbiocompatible or biodegradable properties. To achieve this aim a detailed investigation of the effect of variousfactors on the molecular characteristics of poly(ethylene imine) based polycations and consequently on theirbehavior upon smectites interlayers intercalation has to be performed using wide range of different experimentaltechnique (e.g., XRD, XPS, MAS NMR, and IR spectroscopies) but also by means of DFT method in the solidstate.Biocompatibility of prepared polycations and their smectite intercalates will be assed based on cell viability assayand cell morphology after direct contact with selected substances. Prepared polycationic-smectites will be furtherstudied due to their possible applications as new types of fillers for selected biodegradable polymers, drug-deliverysystems and as new composite materials with optical properties. Interdisciplinary project, as designed, providesunique platform for understanding the properties of the newly synthesized polycation-smectite composites. This approach can significantly contribute to the current level of knowledge in the fields of nanomaterials and has the potential for acquiring fundamentally new results.
Duration: 1.7.2020 – 30.6.2024