Projects

National

Photomat – Fotofunkčné hybridné materiály organických luminofórov a nanočastíc vrstevnatých silikátov
Photofunctional hybrid materials of organic luminophores and nanoparticles of layered silicates
Program: SRDA
Project leader: Mgr. Boháč Peter, PhD.
Annotation: The topic of the project is based on modern trends in materials research, and the experience and recent results of the project team. It was discovered that adsorption, intercalation, or molecular aggregation of specific types of organic molecules can significantly increase their photoactivity, manifesting as an increase in luminescence. The strategy of increasing photoactivity will be the main objective of the project. Each of the phenomena should be applied depending on the molecular structure of the luminophores. The project will focus on hybrids of photoactive organic luminophores and layered silicates. Structurally optimized S,N-heteroaromatic dyes and their ion metal complexes will be prepared within the project. Heteroaromatic systems will be modified by cationic groups or their functionalization with cationic metal ions including Ru(II), Ir(III), Au(III), and others to increase the compatibility of these chromophores with silicates and achieve the required photophysical properties. Appropriate selection of the layered carrier, choice of chemical modification, and suitable conditions for the synthesis of hybrid systems will be the key factors to achieve the project objectives. In addition to improving the properties of molecules, other goals will be to prepare complex functional materials with efficient use of light energy. Here, the organization of molecules in nanostructural hybrids will play a key role to achieve optimal photophysical interactions aimed at specific functionality. In addition to luminescent properties, the aim will be to prepare hybrids with mainly photosensitizing properties. The last step will be the use of nanoparticles for the modification of technical polymers by the formation of nanocomposites. The objective will be obtaining surfaces with photosensitizing and photodisinfection properties, which will be tested for the growth of microbial biofilms.
Duration: 1.7.2023 – 30.6.2026