Field of Scientific Interest
Department of Theoretical Chemistry is engaged in three main research areas. Research activities of the first field are focused on developing advanced computational methods for treating electron correlation in molecules and solids. The second area covers studies on magnetic and electric properties of medium-sized systems including calculations of NMR and EPR parameters of organometallic, biologically and catalytically active substances. The objective of the third research field is combining experimental methods (X-ray and neutron structure analysis, vibrational spectroscopy by inelastic neutron scattering) with precise DFT calculations in the solid state.
- Head of department: Mgr. Stanislav Komorovský, PhD.
Selected Publications
CUYACOT, BJR. – NOVOTNÝ, Jn – BERGER, RJF – KOMOROVSKÝ, S** – MAREK, Radek**. Relativistic spin-orbit electronegativity and the chemical bond between a heavy atom and a light atom. In Chemistry -A European Journal, 2022, vol. 28, no. 24, art. no. e202200277. (2021: 5.020 – IF, Q2 – JCR, 1.343 – SJR, Q1 – SJR). https://doi.org/10.1002/chem.202200277
DIB, E** – REY, J – VICENTE, A – KUNJIR, S – AWALA, H – KOMATY, S – DAOULI, A – BUČKO, T – EL SIBLANI, H – BEDARD, R – BRICKER, J – GILSON, J-P – BADAWI, M – MINTOVA, S**. Access to sodalite cages in ion-exchanged nanosized FAU zeolites probed by hyperpolarized 129Xe NMR and DFT calculations. In Microporous and Mesoporous Materials, 2022, vol. 338, p. 111965-1-111965-7. (2021: 5.876 – IF, Q1 – JCR, 0.924 – SJR, Q1 – SJR). https://doi.org/10.1016/j.micromeso.2022.111965
GEŠVANDTNEROVÁ, M** – BUČKO, T** – RAYBAUD, P** – CHIZALLET, C**. Monomolecular mechanisms of isobutanol conversion to butenes catalyzed by acidic zeolites: Alcohol isomerization as a key to the production of linear butenes. In Journal of Catalysis, 2022, vol. 413, p. 786-802. (2021: 8.047 – IF, Q1 – JCR, 1.936 – SJR, Q1 – SJR). https://doi.org/10.1016/j.jcat.2022.07.025
GIANNI, E** – MORENO RODRÍGUEZ, D** – JANKOVIČ, Ľ – SCHOLTZOVÁ, E – POSPÍŠIL, M. How herbicides like atrazine and diuron interact with the spiral halloysite structure. In Journal of Environmental Chemical Engineering, 2022, vol. 10, no. 6, art. no. 108785. (2021: 7.968 – IF, Q1 – JCR, 1.042 – SJR, Q1 – SJR). https://doi.org/10.1016/j.jece.2022.108785
HERZOG, B – DA SILVA, MC – CASIER, B – BADAWI, M – PASCALE, F – BUČKO, T** – LEBèGUE, S – ROCCA, D**. Assessing the accuracy of machine learning thermodynamic perturbation theory: Density functional theory and beyond. In Journal of Chemical Theory and Computation, 2022, vol. 18, no. 3, p. 1382-1394. (2021: 6.578 – IF, Q1 – JCR, 1.619 – SJR, Q1 – SJR). https://doi.org/10.1021/acs.jctc.1c01034
HRICOVÍNI, M – ASHER, JR – HRICOVÍNI, M**. A study of the photochemical behaviour and relaxation mechanisms of anti-syn isomerisation around quinazolinone -N-N=bonds. In RSC Advances, 2022, vol. 12, no. 42, p. 27442-27452. (2021: 4.036 – IF, Q2 – JCR, 0.667 – SJR, Q1 – SJR). ISSN 2046-2069. Dostupné na: https://doi.org/10.1039/d2ra04529j
JAYKHEDKAR, N – BYSTRICKÝ, R – SÝKORA, M – BUČKO, T**. Understanding the structure-band gap relationship in SrZrS3 at elevated temperatures: a detailed NPT MD study. In Journal of Materials Chemistry C, 2022, vol. 10, no. 33, p. 12032-12042. (2021: 8.067 – IF, Q1 – JCR, 1.608 – SJR, Q1 – SJR). https://doi.org/10.1039/d2tc02253b
KONEČNÝ, L** – VÍCHA, J – KOMOROVSKÝ, S – RUUD, K – REPISKÝ, M**. Accurate X-ray absorption spectra near L- and M-edges from relativistic four-component damped response time-dependent density functional theory. In Inorganic Chemistry, 2022, vol. 61, no. 2, p. 830-846. (2021: 5.436 – IF, Q1 – JCR, 1.121 – SJR, Q1 – SJR). https://doi.org/10.1021/acs.inorgchem.1c02412
MALKINA, O** – HIERSO, J-C** – MALKIN, V. Distinguishing “through-space” from “through-bonds” contribution in indirect nuclear spin-spin coupling: General approaches applied to complex JPP and JPSe scalar couplings. In Journal of the American Chemical Society, 2022, vol. 144, no. 24, p. 10768-10784. (2021: 16.383 – IF, Q1 – JCR, 5.728 – SJR, Q1 – SJR). https://doi.org/10.1021/jacs.2c01637
MALKINA, O** – LEMKEN, F – ASHER, JR – HIERSO, J-C – BÜHL, M – MALKIN, V**. Transmission of spin-polarization by pi-orbitals: an approach to assessing its effect on NMR spin-spin coupling and EPR hyperfine structure. In Physical Chemistry Chemical Physics, 2022, vol. 24, no. 32, p. 24039-24049. (2021: 3.945 – IF, Q1 – JCR, 0.899 – SJR, Q1 – SJR). https://doi.org/10.1039/d2cp03295c
MIŠENKOVÁ, D – LEMKEN, F – REPISKÝ, M – NOGA, J – MALKINA, O – KOMOROVSKÝ, S**. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals. In Journal of Chemical Physics, 2022, vol. 157, no. 16, art. no. 164114. (2021: 4.304 – IF, Q1 – JCR, 1.103 – SJR, Q1 – SJR). https://doi.org/10.1063/5.0103928
MORENO RODRÍGUEZ, D** – JANKOVIČ, Ľ – SCHOLTZOVÁ, E. Immobilisation of diuron herbicide employing smectites. In Materials Today Communications, 2022, vol. 31, p. 103252-1-103252-12. (2021: 3.662 – IF, Q3 – JCR, 0.623 – SJR, Q2 – SJR). https://doi.org/10.1016/j.mtcomm.2022.103252
SAID, H – BUČKO, T**. Effect of molecular impurities on properties of clean and cesiated Mo(001) surface: A DFT study of the low coverage limit. In Applied Surface Science, 2022, vol. 605, p. 154706-1-154706-12. (2021: 7.392 – IF, Q1 – JCR, 1.147 – SJR, Q1 – SJR). https://doi.org/10.1016/j.apsusc.2022.154706
SCHWEITZER, J-M** – REY, J – BIGNAUD, C – BUČKO, T – RAYBAUD, P – MOSCOVICI-MIRANDE, M – PORTEJOIE, F – JAMES, C – BOUCHY, C – CHIZALLET, C**. Multiscale modeling as a tool for the prediction of catalytic performances: The case of n-heptane hydroconversion in a large-pore zeolite. In ACS Catalysis, 2022, vol. 12, no. 2, p. 1068-1081. (2021: 13.700 – IF, Q1 – JCR, 4.202 – SJR, Q1 – SJR). https://doi.org/10.1021/acscatal.1c04707
ŠKORŇA, P** – JANKOVIČ, Ľ – SCHOLTZOVÁ, E – TUNEGA, D. Hexavalent chromium adsorption by tetrahexylphosphonium modified beidellite clay. In Applied Clay Science, 2022, vol. 228, p. 106623-1-106623-8. (2021: 5.907 – IF, Q1 – JCR, 0.958 – SJR, Q1 – SJR). https://doi.org/10.1016/j.clay.2022.106623
International and National Projects
DKS-pNMR – Development of tools for advanced analysis and prediction of parameters of EPR, NMR and pNMR spectra of complex systems containing heavy elements | |
(Vývoj nástrojov pre pokročilú analýzu a predikciu parametrov spektier EPR, NMR a pNMR komplexných systémov obsahujúcich ťažké prvky) | |
Programme: | APVV |
Principal investigator: | Dr. O. Malkin |
Duration: | 07/2020-06/2024 |
Atomic Design of Carbon-Based Materials for New Normal Society | |
(Atómová koncepcia materiálov na báze uhlíka pre novú normálnu spoločnosť ) | |
Programme: | AtomDec V4-Japan Joint Research Program |
Project coordinator: | Advanced Institute for Materials Research (AIMR) Tohoku University Sendai |
Principal investigator IIC SAS: | Ing. Eva Scholtzová, CSc. |
Other partners: | CZ – VŠB-Technical University of Ostrava; CAN – Department of Chemistry The University of British Columbia; HU – Faculty of Science and Informatics University of Szeged; PL – Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw |
Duration: | 01/2021-12/2024 |
Pokrok vo výpočte a interpretácii spektroskopických parametrov zlúčenín ťažkých prvkov | |
(Vývoj nástrojov pre pokročilú analýzu a predikciu parametrov spektier EPR, NMR a pNMR komplexných systémov obsahujúcich ťažké prvky) | |
Programme: | VEGA 2/0135/21 |
Principal investigator: | Dr. O. Malkin |
Duration: | 01/2021-12/2024 |
Pokročilé materiály na báze anorganických vrstevnatých štruktúr študované modelovým a experimentálnym prístupom | |
() | |
Programme: | VEGA 2/0026/23 |
Principal investigator: | Ing. Eva Scholtzová, CSc. |
Duration: | 01/2023-12/2026 |
Foreign Cooperating Institutions
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT – The Arctic University of Norway, Tromsø, Norway
- CEITEC – Central European Institute of Technology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Center of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
- School of Chemistry, St Andrews University, St Andrews, United Kingdom
- ICMUB Institut de Chimie Moléculaire de l’Université de Bourgogne, Dijon, France
- Quantum Chemistry, Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
- Chemistry of Materials, Paris-Lodron-University Salzburg, Salzburg, Austria
- Paul Sabatier University – Toulouse III – Laboratoire de Chimie et Physique Quantiques, Toulouse, France
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
- Charles University, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Praha, Czech Republic
- University of Patras, Department of Geology, Patras, Greece
- Justus-Liebig University Giessen, Institute of Soil Science and Soil Conservation, Giessen, Germany