Medzinárodné
Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments | |
Novel Ultra-High Temperature Ceramic Matrix Cpmposites for Application in Harsh Aerospace Environments | |
Program: | JRP |
Zodpovedný riešiteľ: | Ing. Tatarko Peter, PhD. |
Doba trvania: | 1.1.2024 – 31.12.2026 |
JoinHEC – Vývoj nových metód spájania vysoko-entropických keramických materiálov | |
Development of new joining methods for high entropy ceramics | |
Program: | Bilaterálne – iné |
Zodpovedný riešiteľ: | Ing. Tatarko Peter, PhD. |
Anotácia: | Hlavným cieľom predkladaného projektu je vývoj nových metód spájania pre vysoko-entropické keramické materiály (HEC) za účelom zvýšenia prevádzkových limitov spojov pre vesmírne aplikácie. Projekt navrhuje inovatívny postup prípravy vysoko-entropických keramických spojov s potenciálne zlepšenými vysokoteplotnými vlastnosťami pomocou priameho difúzneho spájania v tuhej fáze (bez prítomnosti medzivrstvy), alebo difúzneho spájania pomocou žiaruvzdornej kovovej medzivrstvy. Po prvýkrát budú použité žiaruvzdorné vysoko-entropické zliatiny (HEA) ako medzivrstvy pre spájanie dvoch vysoko-entropických keramík, a pre spájanie vysoko-entropických keramík ku kompozitom s keramickou matricou (CMCs). Projekt si dáva za úlohu získať nové vedecké poznatky o vplyve elektrického poľa a kvality povrchu materiálov na priame difúzne spájania HEC materiálov, ako aj na pochopenie fyzikálno-chemických dejov odohrávajúcich sa na rozhraní HEC/HEA a HEA/CMCs. Budú skúmané mechanické vlastnosti pri izbovej ako aj zvýšených teplotách s cieľom určenia prevádzkových limitov novovyvinutých spojov. Projekt poskytne komplexný pohľad na spájanie vysoko-entropickej keramiky pre potenciálne aplikácie v leteckom a vesmírnom priemysle. To môže výrazne rozšíriť aplikačný potenciál nedávno vyvinutej novej generácie ultra-vysokoteplotnej keramiky, t.j. vysoko-entropických keramických materiálov. |
Doba trvania: | 1.7.2022 – 30.6.2025 |
Národné
NEOCAR – Ultra-vysokoteplotné karbidy so zvýšenou oxidačnou odolnosťou | |
Novel enhanced oxidation-resistant ultra-high temperature carbides | |
Program: | APVV |
Zodpovedný riešiteľ: | Ing. Tatarko Peter, PhD. |
Anotácia: | Zlepšenie odolnosti voči oxidácii ultra-vysokoteplotných keramických materiálov (UHTC) má zásadný význam pri uspokojovaní rastúcej potreby aplikácií, ktoré sú používané pri teplotách nad 2000 °C v oxidačných atmosférach, ako sú napr. hypersonické vozidlá a kozmické lode. Nedávno sa vďaka výskumu viackomponentnej keramiky, pozostávajúcej zo štyroch alebo viacerých rôznych katiónov alebo aniónov stabilizovaných konfiguračnou entropiou, otvoril priestor na vývoj nových UHTC práve so zvýšenou odolnosťou voči oxidácii. Na dizajn takýchto materiálov cestou predikcie ich zložitých oxidačných procesov je však nevyhnutné komplexne pochopiť monokarbidy a binárne karbidy prechodných kovov, na ktoré sa zameriava tento projekt, čo v súčasnosti v poznatkoch v danej vednej oblasti chýba. Hlavným cieľom projektu je teda vyvinúť nové UHTC materiály odolné voči oxidácii prostredníctvom systematickej experimentálnej štúdie, v ktorej sa skúmajú vysokoteplotné vlastnosti (odolnosť voči oxidácii/ablácii, odolnosť voči tepelným šokom a ďalšie) a mechanické správanie sa monokarbidov a binárnych žiaruvzdorných karbidov. Následne budú syntetizované karbidy s prídavkom sekundárnej fázy so zabudovaným kremíkom, vo forme SiC a silicidov prechodných kovov, ktoré sú známe ako zlúčeniny tvoriace ochrannú sklovitú fázu, ktoré môžu ďalej zlepšovať odolnosť voči oxidácii novo vyvíjaných UHTC. Okrem pochopenia oxidačného a mechanického správania sa týchto keramických a kompozitných materiálov, bude predikcia vytvorených modelov následne potvrdená a to syntézou vybraných 3-, 4- a 5- komponentných kovových karbidových systémov. Následne budú experimentálne stanovené ich vysokoteplotné a mechanické vlastnosti. Riešenie tohto projektu vytvorí súbor základných poznatkov, ktoré sú nevyhnutné pre návrh nových zložitejších viackomponentných keramických materiálov s výrazne zvýšenou oxidačnou odolnosťou, čo bude významným prínosom pre celú komunitu materiálových vied. |
Doba trvania: | 1.7.2023 – 30.6.2027 |
ComCer – Vývoj nových keramických materiálov komplexného zloženia pre extrémne aplikácie | |
Development of new compositionally-complex ceramics for extreme applications | |
Program: | APVV |
Zodpovedný riešiteľ: | Ing. Tatarko Peter, PhD. |
Anotácia: | Hlavným cieľom predkladaného projektu je vývoj novej generácie vysokoteplotných keramických materiálov schopnej odolávať teplotám okolo 3000°C pre pohonné systémy, raketové motory a ďalšie aplikácie vesmírneho priemyslu. To sa dosiahne syntézou diboridovej keramiky s úplne novými komplexnými zloženiami, tvorenými najmenej piatimi kovovými prvkami. Projekt si dáva za úlohu realizovať systematickú štúdiu, ktorou sa nad obudnú nové poznatky smerom k pochopeniu vplyvu molárneho pomeru jednotlivých kovových katiónov v štruktúre diboridov na stabilitu, syntézu, spekanie a mechanické vlastnosti hutnej diboridovej keramiky. Výsledky projektu výrazne prispejú k rozšíreniu novovzniknutého konceptu vývoja vysokoentropických keramických materiálov s ekvimolárnym zložením smerom ku vývoju komplexných keramických materiálov s iným ako ekvimolárnym zložením. Projekt tiež navrhuje inovatívny spôsob prípravy vysokoteplotných keramických materiálov, ktorý pozostáva z tvorby keramických kompozitov na báze multikomponentnej diboridovej keramiky v spojení s využitím žiaruvzdorných prísad. Výstupom projektu bude získanie nových fundamentálnych poznatkov pre tvorbu neusporiadaných diboridových štruktúr, ako aj ich vplyvu na mechanické vlastnosti týchto materiálov pri izbovej, zvýšenej a ultra-vysokej teplote. |
Doba trvania: | 1.7.2022 – 30.6.2026 |
In-situ tvorba bioaktívneho funkčne gradientného nitridu kremičitého počas spekania v elektrickom poli | |
The in-situ formation of bioactive functionally graded silicon nitride by field assisted sintering | |
Program: | VEGA |
Zodpovedný riešiteľ: | Mgr. Tatarková Monika, PhD. |
Anotácia: | Predkladaný projekt navrhuje inovatívny prístup k vývoju novej funkčne gradientnej biokeramiky na báze Si3N4, ktorý pozostáva zo spekania za asistencie elektrického prúdu s následným tepelným spracovaním povrchu oxyacetylénovým plameňom. Bude sa študovať rôzne usporiadanie spekacej sústavy s cieľom maximalizovať smerový účinok elektrického prúdu na migráciu bioaktívnych prísad k jednému z povrchov materiálu. Tým sa zabezpečí tvorba Si3N4 biomateriálu so súvislou gradientnou štruktúrou priamo z jednej, homogénnej práškovej zmesi. Bioaktivita materiálu sa následne zlepší pôsobením kyslíkovo-acetylénového plameňa, pričom vznikne pórovitá vrstva s prítomnosťou bioaktívnych prísad. Navrhovaný prístup po prvýkrát zabezpečí vytvorenie súvislej gradientnej štruktúry in situ bez akýchkoľvek ostrých rozhraní, ktoré sú typické pre vrstevnatú keramiku a väčšinou pôsobia ako koncentrátory napätia. Projekt tiež skúma vplyv gradientnej štruktúry na mechanické a biologické vlastnosti nového funkčne gradientného Si3N4. |
Doba trvania: | 1.1.2022 – 31.12.2024 |
Theoretical predictions and synthesis of (Ti-Zr-Hf-Nb-Ta)B2 structures with non-equimolar compositions | |
Theoretical predictions and synthesis of (Ti-Zr-Hf-Nb-Ta)B2 structures with non-equimolar compositions | |
Program: | DoktoGrant |
Zodpovedný riešiteľ: | MSc. Zhukova Inga |
Anotácia: | V priebehu posledných 10 rokov vzbudili vysoko-entropické zliatiny (HEAs) vysokú pozornosť vedeckej komunity vďaka ich jedinečnej štruktúre a vlastnostiam. Na rozdiel od tradičných kovových zliatin, vysoko-entropické zliatiny tvoria jednofázový tuhý roztok s jednoduchou kryštálovou štruktúrou (napr. plošne alebo priestorovo centrovanou kubickou mriežkou) vďaka vysokej tzv. konfiguračnej entropii, pričom mriežka pozostáva z minimálne štyroch kovových prvkov v ekvimolárnom pomere. V keramickej oblasti bola väčšina výskumných prác venovaná štúdiu vysoko-entropických uhlíkových (karbidických) štruktúr (HECs) s ekvimolárnym pomerom jednotlivých atómov. Naša skupina sa zameriava na výskum vysoko-entropických diboridových štruktúr (HEBs), ktoré pozostávajú z piatich rôznych prechodných prvkov (Hf, Nb, Ta, Ti, Zr) v kombinácií s atómami bóru, pričom skúmame vplyv rôzneho pomeru prvkov na tvorbu štruktúry a jej odpovedajúce vlastnosti.Predkladaný projekt spája teoretické výpočty DFT implementované v programe VASP a laboratórny výskum na potvrdenie teoretických predpovedí. Cieľom projektu bude modelovať a syntetizovať nové štruktúry HEBs s rôznymi molárnymi pomermi jednotlivých kovových prvkov pre nasledujúce spekanie a skúmanie mechanických vlastnosti novonavrhnutých štruktúr. |
Doba trvania: | 1.1.2024 – 31.12.2024 |